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This paper considers the problem of the investor who has numerous opportunities for revising
his portfolio and whose choices are governed by a utility function defined on ‘terminal’ wealth,
Uolxo). Attention is focussed on the behavior of the induced utility functions of intermediate
wealth with r periods to go, U.(x,), and the associated investment policies. Conditions under
which the functions U,(x,) will tend to isoelasticity have previously been given by Mossin and
by Leland. In this paper, the conditions for convergence are weakened further, to the point
where they appear sufficiently broad to encompass perhaps most utility functions of practical
interest.

1. Introduction

This paper considers the ‘reinvestment problem’, i.c., the problem of the
investor who has numerous opportunities for revising his portfolio and whose
choices are governed by a utility function defined on ‘terminal’ wealth, Uy(x,).
Attention is focussed on the properties of the induced utility functions of inter-
mediate wealth with n periods to go, U,(x,), and the associated investment
policies.

Mossin (1968) also studied this problem and found that the functions U,(x)
tend to isoelasticity [i.e., to a function of form (1/y)x"] if the terminal function
has linear risk tolerance. These results were extended by Leland (1972) who
examined the functions for which the [Arrow-Pratt (1963), (1964)] relative risk
aversion of Uy(x,) converges as x, — co. In this paper, the conditions for
convergence are weakened further, to the point where they appear sufficiently
broad to encompass perhaps most utility functions of practical interest. The
main result gives upper and lower bounds on Uy(x,) that guarantee convergence
of U,(x) to a member of the isoelastic class (where —o0 < y < ), in utility as
well as policy space, for a broad class of return distributions. The bounds are
such that only the behavior of Uy(x,) for very large x, is of consequence; the
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shape of Uy(x,) for small x is of no import. The significance of the preceding
is that a large group of long-run investors with a sufficiently distant horizon can
in fact behave optimally by behaving myopically; this is almost never true if the
horizon is not far away [Mossin (1968), Hakansson (1971)]. In addition, due to
the separation property of the isoelastic class, one mutual fund for each y that
can, via the preceding bounds, be ‘associated’ with the set of terminal utility
functions is both necessary and, apart from differing probability beliefs, sufficient
to serve all of these investors in the economy [see Cass and Stiglitz (1970),
Hakansson (1970a)].

In a contemporary paper, Ross (1974) examines the optimality of constant
proportion investment policies (under stationary returns) and obtains a number
of turnpikes that are also optimal policies for the isoelastic class of utility func-
tions. Our results are consistent in that convergence of the (first period) optimal
policy to an isoelastic policy need not imply that the isoelastic policy will be
optimal to the end. In fact, as Theorems 2 and 4 show, convergence to an iso-
elastic policy occurs even when that policy, used throughout, would be infeasible.
In other words, if Interstate 80 is a good choice all the way for travellers from the
East to the San Francisco Bay region, it may be an equally good route for Los
Angeles and Seattle destinations — as far as Salt Lake City.

The paper proceeds as follows. The underlying model is developed in sect. 2,
along with some preliminary results. Sect. 3 contains further background results
plus a simple but revealing set of sufficient conditions for convergence; these
conditions are further illuminated by a pair of corollaries and some examples.
The main result can be found in sect. 4. Section 5 considers the kind of conditions
which must hold for convergence in general (they appear rather weak but are
somewhat lacking in operational value), and sect. 6 contains further discussion.

2. Preliminaries

Aside from the assumptions concerning preferences, the premises employed
in portfolio theory are highly standardized. A positive risk-free interest rate at
which funds can be both borrowed and lent and the existence of one or more
risky investment opportunities with stochastically constant returns to scale is
usually postulated. Furthermore, perfect liquidity and divisibility of the assets
at each (fixed) decision point and absence of transaction costs and taxes are also
implicitly assumed in most instances, along with the opportunity to make short
sales. Reinvestment of all proceeds at each decision point is generally also
postulated, i.e., withdrawals and capital additions are ruled out. Finally,
stochastic independence of returns over time are almost universally presumed.
These assumptions will again be employed in this paper; some relaxations will
be considered in sect. 6. The following basic notation will be adopted:

x; = amount of investment capital at decision point j (the beginning of the
Jjth period);
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M; = the number of investment opportunities available in period j, where
M, = M;
S; = the subset of investment opportunities which it is possible to sell short
in period j;
r;—1 = rate of interest in period j;

Bi; = proceeds per unit of capital invested in opportunity i, where i = 2,
, M, in the jth period (random variable); that is, if we invest an
amount 6 in i at the beginning of the period, we will obtain f;;0 at the

end of that period;

z,; = amount lent in period j (negative z,; indicate borrowing) (decision
variable);

z;; = amount invested in opportunity i, i = 2, ..., M; at the beginning of
the jth period (decision variable).

Fj(J’pJ’s, .- -’J’M,) = Pr {ﬂzj = Vi, .Baj - YNNI ,ﬂij pS J’Mj},

Z; = (sz, ce ,ZM,j),
Zy
— J ;.
UU="—‘, l"—l,...,Mj,
Xxj
Uy = (Uagy 5 Upgyi)s

v;; clearly denotes the proportion of capital x; invested in opportunity i at the
beginning of period j.

We assume that the (nonstationary) return distributions F; are independent
and satisfy the boundedness conditions

0 § /jij é K’ 3.11 iyj’ (l)

E[B;;] 2 rij+n,, where r; 2 ny, > 1,n, >0, )]
some i, all j,

and the ‘no-easy-money condition’
My
Pr{ Y (By—rpb; < 61} > §,, foralljand all 6,
i=2
M
such that ) 16, =1,
i=2

and 6; =2 Oforalli¢ §;,

where 6, < 0,4, > 0. 3)
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We also assume that the investor must remain solvent in each period, i.e., that
he must satisfy the solvency constraints

Prix,; 20}=1, j=12,.... )]

This constraint is necessary to achieve consistency with the standard assumption
of risk-free lending and to cope with the logical requirements of a multiperiod
model of the reinvestment type.

Since the end-of-period capital position is given by the proceeds from current
savings, or the negative of the repayment of current debt plus interest, plus the
proceeds from current risky investments, we have

My
Xjpy =rizg+ Y Byzis J=1,2,...,
=y

where
Mj .
Zzijzxj’ J=12,....

i=1

Combining the preceding we obtain

My
Xj+1 = igz (Bij_rj)zij+rjxja J=12,..., &)
=xJRJ(UJ), _]= 1, 2,‘..,
where
M
Ri(v;) = Zz (Bij=rjvis+r;. ()

Note that R;(v;) is | plus the return on the whole portfolio v; in period j. The
portfolio problem at decision point j is now seen to be one of choosing the vector
of risky investments z; = (z,;, . . ., Zy,;) (proportions v;) so as to produce the
most ‘favorable’ distribution of end-of-period capital x;, ; {or R,(v,)}. Clearly,
My
Uy = 1—,; vy @)
Note that when x; > 0, the solvency constraint (4) is equivalent to the constraint
Pr{R(vj)z20}=1, j=12,.... ®)

Solving (5) recursively, we obtain

N
Xn+1 = Xy Hl Riv;)), N=12,.... )
jo

We now give some preliminary results. The following lemmas are trivial
generalizations of Lemma 1 in Hakansson (1970b):
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Lemma 1. Let (1), (2), and (3) hold. Then the sets V; of portfolios v; which
satisfy the short-sale constraints
Uij g 07 l¢ Sja (10)
and the solvency constraints (8) contain risky portfolios in addition to the riskless
ones and are closed, uniformly bounded, and convex.
Corollary 1. For every feasible portfolio v; with an expected return greater
than the interest rate, the variance of return is positive, i.e.,
var [R(z;)] > 0 if E[R(v;)] > r;, all j. an

Lemma 2. Let (1), (2), (3), and (5) hold and let d be a real number. Then the
sets Z (x;, d) of portfolios z; which satisfy the short-sale constraints

z,; 20, i¢S,, (12)
and the constraints
Prix;y, 2d} =1, (13)

are non-empty for x; = dfr;. Moreover, they contain risky portfolios in addition
to the riskless ones and are closed, bounded, and convex; when x; = d|r;, only the
riskless portfolio z; = (0, . . ., 0) satisfies (12) and (13).

The following corollaries are immediate:

Corollary 2. Z{x,d) = Z(y, d) for x < y whenever y z d|r;, all j.

Corollary 3. Z(x;,d\) = Z(x;,d,) ford, > d, whenever d, < x;r;, allj.

Lemma 3. Let f be a continuous function on [(d, ©) and let (5) hold. Then
g(x;) given by

g(x;) = max  E[f(x;4,)]
zjeZi(xj, d)
exists and is continuous for x; 2 dfr;. If f is monotone increasing, so is g. If f is
strictly concave, so is g, and the solution z(x;, d) is then unique.

The existence of g(x;) is insured by the compactness of Z(x;, d) (see Lemma
2), (1), and the continuity of E[f(x;, )] as a function of z;. The continuity of
g(x;) follows from the additional fact that the boundary of Z(x;, d) is continu-
ous in x;. Monotonicity derives from the observation that for § > 0,

80x;+0)—g(x;) Z ELf (X4 1 +78)—f (X4 1))y
>0, iff'(x)>0,
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where

g(x;) = E[f(xj+1)]

For a proof that g(x;) is strictly concave and the optimal policy z*(x;, d) is
unique when f is strictly concave, see Fama (1970).

Lemma 4. Let fand g be continuous and defined for x 2 d; and x 2 d,, respec-
tively, where d, < d,. Moreover, let f 2 g (f > g) for x Z d, and let (5) hold.
Then f1(x) 2 g1(x) (f1(x) > g1(x)) for x = d,/r;, where

fi(x;) = max E[f{xj+ 1(x;, z;)}, (14)
zjeZj(xj,df)
and
max E[g{xj+ l(xjs Zj)}]- 15)

zjeZj(x,dg)

il

81(xj)

Proof. By Lemma 3, f,(x) and g,(x) exist and are continuous for x = d,/r;.
Let z;(x;)be the solution to eq.(15).Since Z;(x;, d;) = Z(x;,d,) by Corollary 3,
Z{(x;) e Z{(x;,d;); f = g now gives

max  Elg{x;, 1(xj, Zj)}] = E[g{xj+ 1(xj’ 5,')}],

zjeZj(x},dg)

lIA

E[f{xj+ 1(xjs Z—j)}]’
max E[f{xj+ 1(xj, Zj)}],

2jeZj(x5.dg)

(when f > g the first inequality is strict), which completes the proof.

1A

3. First results

We consider the situation in which the investor, while having the opportunity
to make numerous reinvestment decision at discrete points in time, is concerned
only with his terminal wealth position, x,. We assume that his preferences for
terminal wealth are representable by a utility function, Ugy(x4), which is continu-
ous,! monotone increasing, and defined for x, = ¢ = 0. Letting U,(x,) be the
induced utility function, with » periods to go, of wealth x, we obtain, using the
principle of optimality, the recursive relation

Un(xn) = max E[Un—l{xn—l(xn’ Zns Fn’ rn)}]’ (16)

Zn€Zn[Xn, €/(ro . . .rn-1)]
n=12,...,
where r, = 1 and x,_ ((x,, 2., Fy, I',) 1 given by (5). By repeated application of

Lemma 3, each function U,(x,),n = 1,2, ..., exists for x, = ¢/(r,...r,) and

!This assumption may be viewed as redundant since every von Neumann-Morgenstern
utility function defined on an interval is continuous.
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is continuous and monotone. Furthermore, should Uy(x,) be strictly concave,
sois Uy(x,),n=12,....

It is clear that the induced utility functions U,(x,), ..., U(x,) depend on
Fi,...,F,,ry,...,r,as well as Uy(x,), at least under assumptions (1)-(3).
But it may happen that the influence of the return structure is merely to make
U,(x), ...,Ufx) (positive) linear transformations of Uy(x).2 This is the case if
and only if Uy(x) is isoelastic, i.e., it may be written [Mossin (1968)]

Uy(x) = ix a7

where y = 0 represents Uy(x) = log x.
In what follows, we shall make use of the following more general result:

Theorem 1. [Mossin (1968)] Let Uy(x,) have the form
1
Uo(xo) = ;,(xo +m)*. (18)

Then the induced functions U ,(x,), U,(x,), . . . given by the recursive relations

U.x,) = max E[U,_ (x,_ ], n=12,..., (19)

ZneZn[Xn, ~m/(Fo .. .Fn-1)]

where U,(xo) = Uy(x,), have the form

Y
U.(x,) = K1) k) (x"+ m ) n=1,2, ...
y Fi.o.. 1y
1 Y
~ -(xn+ z ) , 0)
y Fio..
where the constants k (y), . . ., k,(y) are given by
1
ki(y) = y max E[-Rj(vj)’:l. @2n
vjeVy Y

Moreover, the solution Z,.(x,) to (19) is given by
Eny(xn) = [xn +m/(r1 CER rn)]vny’ (22)

where the vector v, is the solution to (21). (The equivalence, written ~, follows
from the fact that k,(y), . . ., k,(y) are positive constants.)

Theorem 1 confirms that when m = 0 in (13),

Un(xn) = kl(Y) e kn(y)UO(xn)! h = 1! 2! LRI
~ Uyg(x,),

2When there is no risk of ambiguity, the subscript on x will be dropped.
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so that the optimal portfolio policy in any period is myopic and based on the
terminal utility function directly. Note also that (19) is identical to (16) when
—m = c. Since the solvency constraint only requires ¢ = 0, and the functions
(18) are defined for x4 = —m, it follows that (20) solves (16) whenever m < 0,
ie.,

ki(y)... k Y
U"(x") — 1(}’) n(y)/xn+r m - ) , n = 1’ 2, ..
1.7,

\

whenever
1
Ug(xy) = ;,(xo+m)7, m =< 0.

But when m > 0 in (18), (20) is not a valid solution to (16) [Hakansson (1971)],
since (20) does not obtain if the solvency constraint (4) (i.e., ¢ = 0) must be
observed in (19).

Lemma 5. [Hakansson and Miller (1973)]. Let (1)~(3) hold and let v;, be the
solution to (21). Then for each y there exists an &(y) such that

My
._22 !Uijyl > 8('}’) > 0, j = 1, 2, e e

Thus, the optimal portfolios generated by the class of functions (17) under
assumptsions (1)-(3) always contain, for each y, a minimal fraction of risky
assets in each period.

We now give an important intermediate result.

Lemma 6. k(y) given by (21) is positive and increasing in y, with k;(0) = 1.

Proof. 1t is immediate from (2) and Lemma 1 that k;(y) > 1,7 > 0, k;(0) =
1,0 < ki(y) < 1fory < 0. Thus it suffices to demonstrate that k(y—3) < k;(y)
for § > 0 and, whenever y is positive, § < 7.

Let
or;
Y

[\

>

1 r} or;\'?
f(x)=§(1_—"5/v7-"’("—7> '

1
glx) = ;}x’, xz 0.

We obtain
firy)y =gy =rify, fr))=g"(r;) =r}" L. (23)
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We shall first show that

Jx) s glx), fy20x#r, (24)
by examining the first derivative of
s —(Or /2
Alx) = 1 _ ! bx—©Or;/nl x = max [0, or,/y].

gx)  [=Emre  x
Differentiating with respect to x,

T = s
A = TSV

which, coupled with (23), implies (24).

(r,—x)&0, ifxzr,,

By Theorem 1,
k (y—8)rd S\
max Elf(x;+ )] = y-“l(‘}')"—lj—<xj__>

-

zjeZ J[x,8r (7] [L-©mr-° Y
d
xj g - J= 1: 2’ ]
Y
max E[g(xj+1)] = [kJ(V)/V]x.);’ xj g 0’] = ly 23

z€Zj(xj, Q)

But by (23), (24), and Lemma 4,
k(y—0)re S\ ° )
m{—é xj—; < kfy)x}, x; Z max 0,—? . (25
Since 6/y < 1, (25) must hold for x; = 1; inserting x; = 1, (25) gives
020 s
ko —

Thus k(y—3) < k(y) for 6 > 0 (provided § < y should y be positive), which
completes the proof.

(26)

Corollary 4. Let y, <y, and k(y,), k»(vy), ... and k,(y,), k2(y,), ... be
given by (21). Then there exists a number k < 1 such that

koD _,
A<k j=1,2,....
kj()’z)

Proof. Apply (2) to (26).
We now define

Uo(xo) = a+bug(x,), 27
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Un(x)
k@) ... k)

where b > 0 and a are constants and k,(y), . . ., k,(y) are given by (21). Since
uy(x,), uy(x,),...are merely positive linear transformations of U,(x,),
U,(x5,), ..., they too are valid utility functions; for any finite n, U,(x,) and
u,(x,) give the same solution.

Our first result of interest is:

ux,) = n=12..., (28)

Theorem 2. Let uy(x,) be a continuous and monotone increasing (terminal
wealth utility) function defined for x, = ¢ = 0 satisfying®

1
é(xo—d)*—A(y) S Unlxo) S o+ P +4G), X026 (29)

Sfor some numbers d = ¢, v, and A(y), where Uy(x,) is given by (27) and A(y) is
positive if y > 0 and 0 otherwise. Then the induced (utility of wealth) functions
u(x,) [given by (28), (16), and (21)] satisfy

—i(x,—D,.)*-k"A(y) < uy(x,) < %(x,+Dn)*+k"A(y),

X, = , n=12 ..., (30)
Fi...r
where k < 1 and
d
D, = £d,."->0, @31)
Pl 0,
ie.,
1 } 1
—xY S limuyx) < -x", x=0.
Y

In addition, whenever Uy(x,) is strictly concave and returns are stationary, there
exists, for every € > 0 and all x on any finite interval bounded away from zero, a
number N(g) such that the optimal policy z,(x) satisfies

Mn
Z lzi.n(x)_vinyxl <g, n g N(E); (32)
i=2
where v}, is the solution to (21), i.e., the optimal policy converges to the optimal
policy for the utility function u(x) = (1/y)x".

Proof. Let By(xy) = (1/y)(xq—d)'—A(y) for x,=d, and Ay(xy) =

3If a(x) is defined for x = x; and b(x) for x = x, > x;, we will write a(x) = b(x), x = x,,
whenever the inequality holds for x = x,.
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(1/9)(xo+d) + A(y) for x, = — d, and define B,(x;), B,(x;),...and A(x,),
A,(x,), . .. by the relations

Bn(xn) = max E[Bn-— l{xn—l(xmzn)}]’ n = 19 2: LRI ] (33)
zn€Zn(Xn, Dn-1)
An(xn) = max E[An— l{xn— l(xn’ Zn)}]7 n= l, 2, LRI (34)

z2n€Zn(xn, — Dn-1)

By Theorem 1,

muo=kmynhm§mrum—an n=12..., (9

Aﬁv=kﬂy~hm$®&Dm+Mn n=12...; (6

(35) and (36) exist for x, = D, and x, = — D,, respectively.
Letting

Cn ,
Fioo oty

we obtain, since —d < ¢ £ d,
-D,<C,£D,, n=12,..., 37

and the functions U,(x,),n = 1,2, ..., given by (16) exist for x, = C,. Thus
by (29), Lemma 4, and (37) (recall footnote 3)

B(x,) 2 Uyx,) £ 4,(x), x,=2C,,n=12,.... (38)
By Lemma 6 and Corollary 4 there exists a k£ such that
k() 'sk<l, y>01=12,.... 39

Dividing (38) by £,(7) ... k,(y) and using (28), (35), (36), and (39) gives (30).
(31) follows from the fact that #, > 1 [see (2)] by assumption. Thus letting

=l opy— A
() = (= D)= (40)
o1 v A(y)
un(xn) = ‘;,(xn+Dn) +k1(‘y) T k"(‘y) s (41)

where, by (39),

A(y)
— < k"A(y),
o Ty = A

we obtain

yn(x) > yn—- l(x), n = l’ 25 AL ] (42)



212 N.H. Hakansson, Corvergence in multiperiod portfolio choice

(x) < dy_(x),n=1,2,..., (43)

and taking limits,
1 . . 1
;}x* = lim y,(x) < lim u,(x) < lim #,(x) = -x". (44)
Y

To prove (32) under stationary returns, denote the solutions to (33), (16), and
(34) by z,(x), z¥(x), and Z,(x), respectively, and let [see (33) and (34)], for x = D,,

Zn(x) = {Z: E[An—l{xn— 1(x> Z)}] ; Bn(x)}: n= 1’ 2, LIRS ] (45)
and

Vix) = {v: E[A, - {x,-(x, vx)}] Z B,(x)}, n

But we also have that

L,2,....

{Z: 'I_E[an— 1 {xn— 1(x3 Z)}] g yn(x)} = Zn(x)’ all finite n, (46)
k(y)

since 4,_;(x) and B,(x) differ from #,_ ,(x)/k,(y) and u,(x) only by the multi-
plicative constant k,(y)...k,(y), which, in the stationary case equals k(y)".
Clearly,

Z{x) < Z{x, —D,-,), n=12,...,
so that Z,(x) is bounded for each x (Lemma 2), and by (38)
24(%), zX(x), Z,(x) € Z (%), n=12.... 47
Thus, V,(x) is bounded for any x > D, and by (35) and (36)
Vix) e Vo), x>y>D,, n=12,.... (48)
When uy(x) is strictly concave, so are U,(x), U,(x), ..., A1(x), A,(x),...b
Lemma 3; the solutions z¥(x), z¥(x), . . . Z;(x), Z,(x), . . . are then unique and

y < 1.* Since E[A4,_ ;{x,_ ;(x., 2)}] is strictly concave in z, there is some n (= N)
such that, in view of (44),

Zy(x) = Zy(x, —Dy-1), x> Dy.
But under stationary returns (42) and (43) now imply [see (46)]

Z,(x) < Z,_4(x), n>N, 49)
and by (44)

"1112 {Z Z(—)E[u,, 1{x,.—1(xs Z)}] 2 yn(x)}

Y 1 4 —
{ k() [ y(x, z )]g;’x}—v,x, (50)

“In this case B,(x), B,(x), . . . are also strictly concave but this property is not utilized.
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since z(x) = v,x, by Theorem 1 and the fact that y < 1, is the unique solution to

z

max EI:1 ¥(x, z)’] = k(y) 1 x7.
Y Y

Since M, < M and z}¥(x) is defined for x = C, — 0, (45)-(50) now imply (32),
which completes the proof.
The following corollaries are immediate:

Corollary 5. Assume that uy(x) is bounded and satisfies (29). Then u,(x) —
(A/nx", y < 0, i.e., the induced utility functions will tend to lose their lower (but not
their upper) bound.

Corollary 6. Assume that uy(x ) is unbounded and satisfies (29). Then u,{x) —

(/yx", y = 0, ie., if y > 0, the induced utility functions will tend to become
bounded below.

In words, Theorem 2 says that if for a given terminal utility function Ugy(x)
there exists a power function which, shifted any finite distance d to the right (and,
if the power is positive also any finite distance downward) becomes a lower bound
(on [d, oo]) and, shifted in the opposite direction(s) becomes an upper bound to
U(x), then the induced utility functions converge to that power function.

Remark 1. ug(xo) = (1/y)xy—A YL, x¥, where y, 4 >0, y,<0, i=
1,..., N,satisfies (29); hence u,(x,),n = 1,2, .. ., satisfies(30) and if y < 1and
returns are stationary the optimal policy z¥(x) satisfies (32).

Remark 2. 1If uy(x,) satisfies (29) for some y, then it satisfies (29) for that y
alone.

In interpreting Theorem 2, it is clear that the shape of the utility function for
low levels of wealth is unimportant; the bounds (29) only restrict uy(x, ) for very
large wealth levels. Thus, for example, any Friedman-Savage (1948) terminal
utility function which satisfies (29) for large x, always does so for smaller x,, and
would be covered by either Corollary 5 or Corollary 6.

Let g&(x) = —xug(x)/up(x) be the relative risk aversion function for uy(x). It
is readily verified that ¢&(x) need not converge as x becomes large for terminal
utility functions satisfying (29) since g§(x) may oscillate arbitrarily around 1—y
indefinitely and still satisfy (29). Thus, Theorem 2 goes farther than the results of
Leland (1972), for which g3(x) is required to converge. In addition, Theorem 2
was obtained without use of Leland’s assumption (3) (1972, pp. 27, 32-33).

How broad is the class of terminal utility functions encompassed by Theorem
27 One way to throw light on this question is to identify the functions which do
not satisfy (29). One class of such functions is clearly that for which we can find a
y and a sequence {x;}, x; = oo, such that for every d > 0 [and whenever y > 0
every A(y) > 0]
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1 1
Uo(xi) 2 3 (xi+d)+A4@), Uox) < 7 (x{=dy'—A@), (51)
where neither of the (non-overlapping) subsequences {x/} and {x;’} is finite. (It
may be noted that if (51) is true only for x; £ x or x”" < x, larger d [and, if
applicable, larger 4(y)] can be found such that (29) holds.) Another possibility
is that for every y > 0 there is a number L(y) such that
1
Up(x) > = x",  x 2 L(y), (52)
Y
or that for every y < 0 there is a number L(y) such that

0> Uylx) > %x*, x = L(y). (53)

(52) would be satisfied by utility functions whose relative risk aversion g&(x) —
— oo and (53) by utility functions whose g&(x) — + oo as x increases.
Consider (53). Setting d = L(y) we obtain

1
;,{xo—a’()')}Y < Up(xo) <0, anyy <0,xo2c.
By Lemma 4 and Theorem 1, we obtain [after division by k() . . . k,(¥)]
1
;{x,.--D..()')}Y < u(x,) < 0. (54

Since D,(y) satisfies (31) for all y, no matter how negative, this gives, using
analogous reasoning for (52):

Theorem 3. For every ¢ > 0 and every negative (positive) y there is a number
N(e, y) such that

@) if Uo(x) satisfies (53)

1;(x—e)7 <u(x) <0, n=Ne9, (55)
(i) if Uo(x) satisfies (52)

1; (mef < @), 12 Ne. (56)

Remark 3.  uy(x) = —e™, y < 0, satisfies (53); hence u,(x) satisfies (55).

Recall that
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Ull(x" )
k@) .. ko)’

and that lim, , k(y) = o and lim , _, k,(y) = O [see (26)]. Thus there can
be no (1/y)x", where v is finite, to which u,(x) in (55) or (56) converges. What we
can say is that the relative risk aversion function g*(x) of u,(x) tends to + o in
(55) and to — oo in (56).

The functions belonging to the class (51) will be taken up in the following
sections.

Uy (X,) = (28)

4. The main theorem
We now state our central result.
Theorem 4. Let uy(xy) be a continuous and monotone increasing (terminal
wealth utility) function defined for x, = ¢ = O satisfying®
1 1
—)-,(xo—d)”——B(xo—d) S Uglxo) = ;(x0+d)7+A(x0+d), X9 Z €,
(57)

Jfor some numbers y and d = ¢, where Uy(x,) is given by (27) and B(x), A(x) = 0
are defined for x = 0. Moreover, let B(x) and A(x) be such that

(i) wheny > 0,

B(x) = A(x) = Kxj, (58)
where K > 0,0 < ¥ < 7;
(ii) when y < 0,

3(x0+d)"+A(x0+d) <0, x4z —d, (59)
and
ko(y, x) Pw(g, x)
<k s 22 <k, n=12,..., (60)
ko(v) Pa(g, X)

Jor all positive g = 1 and x = 0, where k,(y) is given by (21),

—-m
Zny Xy~
Fog...ly—1

is the solution to (19),

E[B{xn— I(Zny(xn’ Dn—l))—Dn—l}]

kn(’Y! xu_Dn) = B(x _D) (61)

5See footnote 3.
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and p,(q, x) and p,(q, x) are defined by

1
max E[;’)}(xn—1+Dn—1)Y+qA(xn—1+Dn—l)]

zn€Zn(Xn, —Dn-1)

= Pi(g; X+ Dn)!(xn + Dn)"+Pul(gs X+ Dp)qA(Xa+ D),
’ n=12,...;
(62)
(iii) when y = 0, k,(y, x) and p,{q, x) (given by (61) and (62)) satisfy
kv, x), plg. x) £k <1, n=12...,

Sor all positive ¢ £ 1 and x 2 0. Then the induced (utility of wealth) functions
ux,),n=1,2,...[given by (28), (16), and (21)] satisfy

1 1
;(xn_Dn)Y_Bn(xn) = un(xn) = _(xn+Dn)y+An(xn)’
?

x, =2C,, n=12,..., (63)
where
A(%4), By(x,), D, > 0, (64)

ie.,
1 . 1
-x¥ < lim u,(x) £ -x".
Y Y

In addition, whenever Uy(x,) is strictly concave and returns are stationary, there
exists, for every ¢ > 0 and all x on any finite interval bounded away from zero, a
number N(g) such that the optimal policy z} (x) satisfies

Mn
N |Zi:(x)_vinyx[ <eg, n g N(S)a (32)

i=

where v;, is the solution to (21), i.e., the optimal policy converges to the optimal
policy for the utility function u(x) = (1/y)x".

Proof. We give the proof for y > 0 first. [As before, D, is given by (31).] By
Lemma 6, k,(y) > k,(5) and by Corollary 4 there exists a number k < 1 such
that

k(7) _
.k"(?)gk, n=12.... (65)

For the feasible policy v,, in (21) we obtain
k() = E[R(vsy)'] £ k(7) if 7 > 0. (66)
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Hence fory > 9% > 0

1 -
](1()’);(351—D1)Y—121(3’)K(xl_D1)y

= max El:1 (xo—Do)Y—K(xo—Do){l < Uylxy)

z1€Z((x1, Do)

1 _
< max E[_(x0+D0)7+K(x0D0)V:|

z1€Z1(x1, — Do)
1 ~ -
= kl(y)-}-)(x1+D1)7+k1(y)K(xl+Dl)7, x, 2 Cy,

again using Lemma 4. By recursion and dividing through by k(7). .. k.(y) we
obtain, using (28), (65), and (66),

1 -
- (xn_Dn)y_k"K(xn_Dn)y = un(xn)
Y

1 .
é ; (xn+ Dn)+k"K(xn+ Dn)7’
Xy 2 Cy, 67
where k"K(x + D,)’ = O since k < 1 and D, £ d, and D, - 0 because , > 1

[see (31)].
When y < 0, we obtain from (61) and Lemma 4, since z,,.(x,, D,-,) is a
feasible policy,

ky(
Z (= D,k 11~ D)BCx = D)
]
= max El:“ (xo—Do)Y"‘B(xo—Do)] g Uylxy). (68)
z1€Z1(x1, Do) Y

(59), (62), and Lemma 4 give

1
Uy(x,) = max E[;} (xo+ Do)+ A(xo+ Do)]

z1eZ1(x1, — Do)

1, x,+D _
=P XA DY) (D45 xi4 D1)AG, + D)

< 0, xy 2 Cy, (69)
where, by (21)
p1(, x+Dy) 2 k()
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Defining ¢,(x,) by

ci(x)pi(l, x,+Dy) = ky(y), x;,2 —Dy, (70)
we have
0<ei(xy) =1, 1)
and hence from (69) and (70)
< k() " _
Ui(xy) = " X1+ D) +ey(xy)pi(1, x;+ Dy )A(x; + D)
<0, x,2C,. (72)

By assumption (60)
ku(y, Xo— D)
k()
puk"™ !, x,+ D,)
puk"™ 1, X, + D)

lIA

k, X,

v

D, n=12..., (73)

IIA

k, x

n

Iv

-D,, n=12,..., (74)

for some 0 < k < 1. Dividing (68) and (72) by k,(y), we obtain, using
(28), (70), (73), and (74),

1
7)’ (x;— D) —kB(x;— D)= u,(x,)

1
= . (x1+ D,y +kA(x,+ D,),

x, = Cq. 75)

Since k < 1 in (75) and Dy, > D, > D, ..., we can repeat the process for
n=2,3,..., which gives

1
;(xn_Dn)y_k"B(xn_Dn) = un(xn)’

1
= :Y- (xn + Dn)y+k"A(xn + Dn)’
x, = C,. (76)
Again, both bounds converge to (1/y)x", which completes the proof of (63) and
(64) for y < 0; the proof for y = 0 is similar. The proof of (32) [when uy(x) is
strictly concave and returns are stationary] is essentially the same as that used in
Theorem 2 and is therefore omitted.

The following corollary is immediate:
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Corollary 7. Assume that uy(x,) satisfies (57) for some y > 0, where A(x) =
B(x) 2 0 for x = 0, and

max  E[A(x,-,)]
k k,,(}’) g Zn€Zn(xn, 0)

, =12...,
A g
for all x, =2 0 and some k < 1. Then the induced utility functions u,(x,), n =
1,2,..., satisfy (76) and hence (63) and (64); and if y < | the optimal policy
z¥(x) satisfies (32) under stationary returns.

Remark 4. Letuo(x,) = Y 1., (a;/y;)x}, where the a; are positive constants
and max;y; > 0. Then Ugy(x,) satisfies (57) and (58) and hence u,(x,), n =
1,2,..., satisfies (63) and (64) for y = max;y;, and if y < 1 (and returns are
stationary) the optimal policy z¥(x) satisfies (32).

In words, if the terminal utility of wealth function is a positive linear combina-
tion of power functions and at least one power is positive, the induced
utility of wealth functions converge to that power function in the linear combina-
tion which has the largest exponent.

Remark 5. Letug(xo) = i, (a;/y;)x}¥, where the a; are positive constants,
y = max; y; < 0, and
ku(yis )
ka(y)

where k,(v;; ) = E[R,(v,,)"']. Then Uy(x,) satisfies the conditions of Theorem
4, i.e., u,(x) converges to (1/y)x” and if returns are stationary z}(x) satisfies (32).
A sufficient, but not necessary, condition for (77) to hold is

PriR(,)=1}=1, n=12..., (78)

<k<l, aly#y3n=12..., an

as is easily verified ; (78) is consistent with assumptions (2) and (3) and may well
be satisfied for sufficiently risk-averse investors.

Significant extension of the boundaries A(x) and B(x) beyond the limits given
in (58) is not possible for general return distributions since if we attempt to make
7 =y, convergence of u,(x) to (1/y)x" need not occur, as the following counter-
example shows.

Let uq(x,) be strictly concave and such that

1
-x7 2 Uyg(x) £ -Sx’, s> 1, (79)
Y

where U,(x) has contact with the lower bound at points . . . £x’, x’, 4x’, 16x’ . . .
and the upper bound at points . . . 2x", x”, 4x”, 16x"" . . . . Assume that R;(v;,)
[where v;,, as before, is the policy which maximizes (21)] assumes the values }
and 2 with equal probability in each period and let v;(x,)x, be the optimal policy
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with n periods to go. Then it is readily verified [recall that Uy(x,) is strictly
concave] that vi(x,) = vy, for x; =...4x", 2%, 8x', ... 4x", 2x", 8x"', . ..
which gives

k

Uixy) = %)x{, X, = ..., 2x,8x", ...,
k

U,(x,) = 2 (}))xi, X;=...3x",2x", 8x",....

Continuing in the same fashion, each of the functions u,(x,), u3(x;), . . . is con-
tinuous and strictly concave by Lemma 3 and satisfies
1

X7 S uy(x) < a7, (80)
Y b

by Lemma 4, with u,(x) alternatingly touching both boundaries at points
AL, X Ax, L X", X7, 4x”, L. L (neven) or points . . .3x', 2x, 8x', ... X",
2x"”, 8x"”, ... (n odd). Thus, u,(x) does not converge to an isoelastic function of
any power (or any other function).

5. A sufficient condition for convergence

We have noted that (63) and (64) fail to hold if the terminal utility function
Uo(x,) satisfies (52) or (53) or oscillates rather violently around some (1/y)x" and
does so indefinitely. However, failure of the bounds in (57) to converge does not
necessarily mean that u,(x,) fails to converge to an isoelastic function. For
example, if Ri(v;) were to have a uni-modal density, the function in (79) would
converge in the sense that s, instead of remaining fixed, could be reduced to 1 in
(80).

The theorem below illustrates the kind of requirement that must be satisfied
for a utility function not satisfying (57) to converge to an isoelastic one. The
following notation and lemma will be needed. Let

U’l (x'l )

u(x,) = T n=12..., 81

b
21...k2"

where U,(x,), U,(x,), . . . are given by (16) and k,,, k,,, . .. are given by

o€V n

kin = 7; - max E[ R,,(v,,)”'""], i=1,2;n=12,...;

(82)

in—1

in (82), y,, is the smallest value of y such that

Un(xn) = k21"'k2n (x,,+D2,|)7, Xn g C,,,n= 1’ 2)'-~- (83)
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Also, let
U,(x)
k)= 22, n=12,.... (84)
Un— l(x)
Lemma 7. If
A(x)—x" S .
x2—xn =7

where y; < y;, x> 1,0 < e < 1, then
A(x) > x5
The proof is based on the strict convexity of x*in y, x > 1.
As an example, for utility functions unbounded above we can state:
Theorem 5. Let Uy(xy) be a continuous and monotone increasing (terminal
wealth utility) function defined for x, = ¢ = 0 satisfying®
(xo—=D10)"° = Ug(xo) £ (xg+ D)™, xo2¢ (8%5)

Jfor some numbersy,o > v, = 0and D,y > ¢, D, = 0. Then the induced utility
Sfunctions u(x,), n =1,2,..., [given in (81), (16), and (82)] satisfy

(xn - Dln).“" é un(xn) § (xn+ DZn)n"’ (86)

where both bounds are tight,
DiO

D,=—— i=12 n=12,..., 87)
ro...r,
Y21 2 Y222 -..,and
Yan—Vin = (I_S)H—L(Yzo_)’lo), nzLzN, (88)

Sfor some number L whenever there exists an ¢ (0 < ¢ < 1) such that

[kn(xn)/an]un-— l(xn)_ (xn_ Dln)“{l mot
(X,,+ Dzn)n"‘_ 1 —(xn — Dln)'ll,n_l

Proof. By (81) and (83) we have
u(x,) = (x,+ D, )y, x,=2C,n=12,..., (90)

28’ xnngn’ngN' (89)

where y,; = 7,5, = ... by Lemma 4. For n = N—1 there also exists, since we
may choose D, arbitrarily large, a 7, _; (which may be less than y,4) such
that

uy_(xn—1) = (xN—l—Dl,N—l)n’N_la Xy-1 2 Dyn_y, 1

¢See footnote 3.



222 N.H. Hakansson, Convergence in multiperiod portfolio choice

with equality holding for some values of xy_,. Using (81) and (84) we obtain

ka(x,)
kln

u,(x,) = u,_4(x,), n=12,....

Thus, by assumption (89),

un(xn)_(xn_ I)ln)Yl’"_1
(xn+ DZH)Y'Z',"_1 _(xn_ Dln)y’"_1

[\

e, x,=zD,,n=N. (92)

By Lemma 7 (remembering that x,+ D,, > x,— D,,), (92) gives
uy(xy) > (xy— Dyy)ov-rteian - in -0 xS Dyt
But since y; y-4 2 0,

(xN_DIN)yx,N—1+£(yz,N-1-y1,N—x) é (xN_DlN)')'l,N—i’
Dy = xy £ Diyt+1,

so that
uy(xy) 2 (xy— Dn)"Y, Xy 2 Dy,

where, with equality holding for some xy,
Yiv > ViN-1TEQa N1V iN-1)-

Setting y; y—1—71,8-1 = K(y20—710), We obtain
Yan—Yin S (1=K (y20—710)-

But (89) holds for all # = N so that by recursion
P2e=71n S (1=8)" "V 'K(y30=710), 172N,

- 0,

which concludes the proof.

In fig. 1, the ratio (89) is depicted as 4/(4 + B). The requirement that it exceed
¢ seems rather innocuous. Recall also that it need not be operative until # > N.
When equality holds in (85) [which is only possible over finite intervals of large x
if (57) and (58) are violated since D, > c], A/(4+ B) may in fact be zero for
some x when # is small. But (3) and Lemma 5 insure that after a finite number of
iterations, contact between U, (x,) and the lower bound is limited to single points;
and the same properties assure that from that point on the ratio will be non-
zero.

6. Discussion

The reader will undoubtedly have noted that the preceding results do not
depend on the terminal utility function being monotone everywhere. While
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Fig. 1. Abscissa: wealth, ordinate: utility.

many locally decreasing functions satisfy the necessary bounds, they were ruled
out on a priori grounds. The same observation holds regarding the presence of
the solvency constraint (4) and the concomitant assumption that ¢ = 0; mathe-
matically everything goes through for ¢ < 0.

If the analysis is restricted to functions U,(x,) which are risk averse for large
Xgo, the upper bound in (1) can be relaxed to the point where only the first
moments are bounded.

The preceding results can also be extended, with some complication, to the
case in which there is no riskless asset, provided the returns on the risky assets
are sufficiently favorable.

Since utility functions of type (52) are clearly of no interest, functions of type
(53) seem to be of at most limited interest, and (89) would, for realistic return
structures, appear satisfied by many functions not satisfying the requirements of
Theorem 4, the asymptotic relevance of the class (17) extends to a substantial
portion of the terminal utility functions one might expect to encounter in real
situations. The significance of this is threefold. First, ‘qualifying’ investors can
without sacrifice behave myopically when their horizon is distant (even though
most of them can only do so at a considerable price when the horizon is near),
since (17) is the only class for which optimal behavior is always myopic. Second,
since (17) exhibits the separation property but each y yields a different optimal
mix of risky assets (which is not a linear combination of other mixes) [Cass and
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Stiglitz (1970), Hakansson (1970a)], one mutual fund for each y associated with
the set of terminal utility functions is both necessary and, in the absence of
differing return assessments, sufficient to serve all such long-run ‘re-investors’ in
the economy. Finally, all long-run investors associated with a y < y*, where
y* > 0 (and depends on Fy, ..., F,, r{,...,r,), will invest in such a way that
Pr {x; < x,} = 0, i.e., they will not risk ruin [Hakansson and Miller (1973)].

Writing on a related topic, Goldman (1974) showed that the ‘growth-optimal’
or logarithmic policy is a poor one to pursue for investors with bounded utility
functions. That result can be said to be confirmed in the present paper in the
sense that when the optimal policy for a bounded function does converge to an
isoelastic policy, it is never to the logarithmic one (y = 0) but to one with a
negative power, i.e., to a more conservative policy (see also Corollary 5). In
fact, it is clear from the present results that the class of utility functions for which
the logarithmic policy is asymptotically optimal is small indeed — even though
that policy has the noteworthy property that it almost surely leads to more
capital in the long run than any other (significantly different) policy.
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