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OPTIMAL INVESTMENT AND CONSUMPTION STRATEGIES 
UNDER RISK FOR A CLASS O F  UTILITY FUNCTIONS' 

This paper develops a sequential model of the individual's economic decision problem 
under risk. On the basis of this model, optimal consumption, investment, and borrowing- 
lending strategies are obtained in closed form for a class of utility functions. For a subset of 
this class the optimal consumption strategy satisfies the permanent income hypothesis 
precisely. The optimal investment strategies have the property that the optimal mix of risky 
investments is independent of wealth, noncapital income, age, and impatience to consume. 
Necessary and sufficient conditions for long-run capital growth are also given. 

1. INTRODUCTION AND SUMMARY 

THIS PAPER presents a normative model of the individual's economic decision 
problem under risk. On the basis of this model, optimal consumption, investment, 
and borrowing-lending strategies are obtained in closed form for a class of utility 
functions. The model itself may be viewed as a formalization of Irving Fisher's 
model of the individual under risk, as presented in The Theory of Interest [4] ; at the 
same time, it represents a generalization of Phelps' model of personal saving [lo]. 

The various components of the decision problem are developed and assembled 
into a formal model in Section 2. The objective of the individual is postulated to 
be the maximization of expected utility from consumption over time. His resources 
are assumed to consist of an initial capital position (which may be negative) and 
a noncapital income stream which is known with certainty. The individual faces 
both kancial opportunities (borrowing and lending) and an arbitrary number of 
productive investment opportunities. The returns from the productive opportuni- 
ties are assumed to be random variables, whose probability distributions satisfy 
the "no-easy-money condition." The fundamental characteristic of the approach 
taken is that the portfolio composition decision, the financing decision, and the 
consumption decision are all analyzed simultaneously in one model. The vehicle 
of analysis is discrete-time dynamic programming. 

In Section 3, optimal strategies are derived for the class of utility functions # - zT=, &'u(cj), 0 < a < 1, where cj is the amount of consumption in period j, such 
that either the relative risk aversion index, -cu"(c)/u'(c), or the absolute risk 
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aversion index, -u"(c)/u'(c), is a positive constant for all c 2 0, i.e., u(c) = cY, 
0 < y < 1, u(c) = -c-', y > 0, u(c) = logc, and u(c) = -e-'', y > 0. 

Section 4 is devoted to a discussion of the properties of the optimal consumption 
strategies, which turn out to be linear and increasing in wealth and in the present 
value of the noncapital income stream. In three of the four models studied, the , 
optimal consumption strategies precisely satisfy the properties specified by the 
consumption hypotheses of Modigliani and Brumberg [9] and of Friedman [q. 
The effects of changes in impatience and in risk aversion on the optimal amount to 
consume are found to coincide with one's expectations. In response to changes in P 

the "favorableness" of the investment opportunities, however, the four models 
exhibit an exceptionally diverse pattern with respect to consumption behavior. 

The optimal investment strategies have the property that the optimal mix of v 
risky (productive) investments in each model is independent of the individual's 
wealth, noncapital income stream, and impatience to consume. It is shown in 
Section 5 that the optimal mix depends in each case only on the probability dis- 
tributions of the returns, the interest rate, and the individual's one-period utility 
function of consumption. This section also discusses the properties of the optimal 
lending and borrowing strategies, which are linear in wealth. Three of the models 
always call for borrowing when the individual is poor while the fourth model 
always calls for lending when he is sufficiently rich. The effect of differing borrowing 
and lending rates is also examined. 

Necessary and sufficient conditions for capital growth are derived in Section 6. 
It is found that when the one-period utility function ofconsumption is logarithmic, 
the individual will always invest the capital available after the allotment to current 
consumption so as to maximize the expected growth rate of capital plus the present 
value of the noncapital income stream. Finally, Section 7 indicates how the preced- 
ing results are modified in the nonstationary case and under a finite horizon. 

2. THE MODEL 

In this section we shall combine the building blocks discussed in the previous 
section into a formal model. The following notation and assumptions will be 
employed : 

c,: amount of consumption in period j ,  where cj 2 0 (decision variable). 
U(c , ,  c2,c3,. . .): the utility function, dcfined over all possible consumption programs (c,, c,, c3, . . .). 

The class of functions to be considered is that of the form 

It is assunlcd that u(c)  is monotone increasing, twice differentiable, and strictly concave for c 2 0. 
The objectivc in each case is to maximize E[U(c,, c,, . . .)I, i.e., the expected utility derived from con- 
sumption over time.' 

x j :  amount ofcapital (debt) on hand a t  decision pointj(the beginning of thejth period) (state variable). 
y .  income received from noncapital sources at the end of each period, where 0 < y < co. 

While we make use of the expected utility theorcm, we assume that the von Neumann-Morgenstern 
postulates [12] have been modified in such a way as to permit unbounded utility functions, 
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M : the number of available investment opportunities. 
S: thc subset of investment opportunities which it is possible to sell short. 
zij: amount invested in opportunity i, i = 1,. . . , M, at the beginning of the jth period (decision 

variable). 
r - 1 : rate of interest, where r 1. 
ji : transformation of each unit of capital invested in opportunity i in any period j (random variable); 

that is, if we invest an amount 6 in i at  the beginning of aperiod, we will obtain pie at the end of that period 
(stochnstically constant returns to scale, no transaction costs or taxes). The joint distribution functions 
of the Pi, i = 1,. . . , M, arc assumed to be known and independent with respect to time j. The {pi) have 
the following properties : 

(i = 2,.  . . , M), 

for all finite Oi such that 0; >, 0 for all i $ S and 0, f 0 for at least one i. 
fixj): expected utility obtainable from consumption over all future time, evaluated at decision 

point j ,  when capital at  that point is x j  and an optimal strategy is followed with respect to consumption 
and investment. 

Y: present value at any decision point of the noncapital income stream capitalized at the rate of 
interest, i.e.. Y = y/(r - 1). 

a = (u2,. . . , uM): a vector of real numbers. 
M 

h(B) = E u 1 (pi - r)vi + r . [ L=* I1 
k : maximum of h(u) subject to (27) and (28) (see (26)). 
B* : vector B which gives maximum k of h(B) (see (26)). 

U 

v* = C v ; ,  
i=2 

c*(x): an optimal consumption strategy. 
z;(x): an optimal lending strategy. 
zt(x): an optimal investment strategy for opportunity i, i = L,. . . , M .  
sj = x, + Y. 

The limitations of utility functions of the form (1) are well known and need not 
be elaborated here. Condition (4) will be referred to as the "no-easy-money 
condition." In essence, this condition states (i) that no combination of productive 
investment opportunities exists which provides, with probability 1, a return at 
least as high as the (borrowing) rate of interest; (ii) that no combination of short 
sales exists in which the probability is zero that a loss will exceed the (lending) rate of 
interest; (iii) that no combination of productive investments made from the 
proceeds of any short sale can guarantee against loss. For these reasons, (4) may be 
viewed as a condition that the prices of'the various assets in the market must 
satisfy in equilibrium. 

Consumption and investment decisions are assumed to be made at  the beginning 
of each period. The amount allocated to consumption is assumed to be spent 
immediately or, if spent gradually over the period, to be set aside in a nonearning 
account. We also assume that any debt incurred by the individual must at  all limes 
be fully secured, i.e., that the individual must be solvent at each decision point. 
In view of the "no-easy-money condition" (4), this implies that his (net) debt 
cannot exceed the present value, on the basis of the (borrowing) rate of interest, of 
his noncapital income stream at  the end of any period. 
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We shall now identify the relation which determines the amount of capital (debt) 
on hand at each decision point in terms of the amount on hand at the previous 
decision point. This leads to the difference equation 

i = 2  

where 

;= l 

The first term of (5) represents the payment of the debt or the proceeds from 
savings, the second term the proceeds from productive investments, and the third 
term the noncapital income received. Combining (5) and (6) we obtain 

This is the difference equation, then, which governs the process we are about to 
study. 

The definition ofj,(xj) may formally be written 

(8) f,(xj) = max E[U(c,, c ~ + ~ ,  c ~ + ~ ,  . . .)](xj. 
From (1) we obtain, by the principle of o ~ t i r n a l i t ~ , ~  for all j, 

(9)  = rnax E["(cj) + a{max E[U(cj+ 1, cj+2, . . . ) : l Ixj+ l ) l l x j 9  

since we have assumed the (pi} to be independently distributed with respect to 
time j. By (8), (9) reduces to 

Since by our assumptions we are faced with exactly the same problem at decision 
point j + 1 as when we are at decision point j, the time subscript may be dropped. 
Using (7), (10) then becomes 

subject to 

and 

(14) Pr { 5 (jli - r)zi + r(x - c) + y 2 - Y 
i = 2  

at each decision point. Expression (14), of course, represents the solvency constraint. 

The principle of optimality states that an optimal strategy has the property that whatever the initial 
state and the initial decision, the remaining decisions must constitute an optimal strategy with regard 
to the state resulting from the first decision [2, p. 831. 



OPTIMAL INVESTMENT 

For comparison, the model studied by Phelps [lo] is given by the functional 
equation 

In this model, all capital not currently consumed obeys the transformation p, which 
is identically and independently distributed in each period. Since the amount 
invested, x - c, is determined once c is known, (15) has only one decision variable 
( ~ 1 . ~  

Since x represents capital, f (x) is clearly the utility of money at any decision 
point j. Instead of being assumed, as is generally the case, the utility function of 
money has in this model been induced from inputs which are more basic than the 
preferences for money itself. As (11) shows, f (x) depends on the individual's 
preferences with respect to consumption, his noncapital income stream, the interest 
rate, and the available investment opportunities and their riskiness. 

3. THE MAIN THEOREMS 

We shall now give the solution to (1 1) for the class of one-period utility functions 

U ( C )  = log c, 

0 < y < 1 (Model I); 

(Model 11); 

(Model 111) ; 

(19) u(c) = -e-?', y > 0 (Model IV) 

Phelps gives the solution to (15) for the utility functions u(c) = cy, 0 4 y 1, u(c) = -c-', y < 0, 
and for u(c) = logc when y = 0. Unfortunately, this solution is incorrect in the general case, i.e., 
whenever y r 0 and the distribution of B is nondegenerate. For example, when u(c) = -c - * ,  the 
solution is asserted to be, letting F E[B-'], 

whenever ap  i 1. But for this to be a solution, it would be necessary that one be able to write 

which is clearly impossible unless the distribution of B is degenerate or y = 0 or both. The right side 
of (15c) may, of course, be regarded as a first-order approximation of the left side when the variance of 
B is small, but this negates the presence of uncertainty. In fact, the preceding solution holds even under 
wrtainty only when up 2 1 and x 3 [(afl)-''(Y+') - l]y/(B - I), i.e., when c(x) is less than or equal to 
x in all future periods. 

It appears that an analytic solution to (15) does not exist when y > 0 and the distribution of fl is 
nondegenerate. It is ironic, therefore, that when m e  generalizes Phelps' probler,~ by introducing the 
possibility of choice among risky investment opportunities and the opportunity to borrow and lend 
(see(ll)),an analytic solution docs c?: :  r (as will be shown). It is the second of thesegeneralizations which 
guarantees the solution in closed form. 



Pratt [ll] notes that (16H18) are the only monotone increasing and strictly 
concave utility functions for which the relative risk aversion index 

is a positive constant and that (19) is the only monotone increasing and strictly 
concave utility function for which the absolute risk aversion index 

is a positive con~tan t .~  

THEOREM 1 : Let u(c), u, y, r, {pi ) ,  and Y be defined as in Section 2. Then, whenever 
U ( C )  is one of the functions (16H18) and ky < l / u  in Model I, a solution to (11)  
subject to (12H14)  exists for x 3 - Y and is given by 

(25) zI(x) = (1 - B)v;(x + Y) 
where the constants v; (; - I:, v:) and k are given bv 

M 

= max E u (pi - r )q  + r , 
(oil  [ ( i = 2  11 

subject to 

and 

(28) ~ r { f ( ~ ~ - r ) v ~ + r a o  i = 2  

and the constants A, B, and C are given by 
( i )  in the case of Models 1-11, 

The underlying mathematical reason why solutions are obtained in closed form ("heorems I and 2) 
for the utility functions (16H19) is that these functions are also the only (rnonotonc increasing and 
strictly concave utility function) solutions (see [8]) to the functional equations u ( x y )  = v(x)w(y),  
u ( x y )  = o(x) + w(y) ,  u(x + y )  = u(x)w(y) ,  and u(x  + y )  = ~ ( x )  + w(y) ,  which are known as the 
generalized Cauchy equations [I, p. 1411. 
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(ii) in the case of Model 111, 

1 c=-  a log a ak 
log (1 - a)  + - + - 

1 - a  ( 1  - a)2 (1 - a)=. 

Furthermore, the solution is unique. 

In proving this theorem, we shall make use of the following lemma and corol- 
laries. 

LEMMA: Let u(c), {pi), and r be dejned as in Section 2 and let 5 - (u2, . . . , v,) 
be a vector of real numbers. Then the function 

subject to the constraints 

and 

has a maximum and the maximizing vi (- v;) arefinite and unique. 

PROOF: Let D be the ( M  - 1)-dimensional space defined by the set of points 5 
which satisfy (27) and (28). We shall first prove that the set D is nonempty, closed, 
bounded, and convex, and that h is strictly concave on 0.' 

The nonemptiness of D follows trivially from the observation that 
6' - (0,0,. . . ,0) is a member of D. By the boundedness of the Pi's and of r ((2) and 
(3)), there exists a neighborhood of fiO in relation to D. That is, there is a neighbor- 
hood of points 6' such that 

where vf 2 0 for all i .$ S. 
Now consider the point 5' - f i O  + lfi' = 16' where 1 3 0 and 6' is one of the 

points in this neighborhood. Let b(5) be the greatest lower bound on b such that 

'The author gratefully acknowledges a debt to Professor George W. Brown ror several valuable 
suggestions concerning the proof of the closure and the boundedness of D. 
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By the "no-easy-money condition" (4), b(ij') 2 - r for ii' ED, b(iiO) = 0, and 
b(6) < 0 for all ii # 5'. Applying the "no-easy-money condition" with respect to the 
point 5"nd using the inequality 

we obtain that lb(6') = b(lLvl). But when Ib(6') < - r, or l > - r/b(C1), the point 6" 
cannot lie in D since II  > - r/b(Gf) implies that 

Thus, I ,  - -r/b(ijf) is the greatest lower bound on I such that ija$ D. Since 
lob(ij') = -r, ii" E D and is in fact the point farthest from i jo  lying on the line 
through iiO and ii' and belonging to D. 

We shall only sketch the remainder of the proof establishing the closure and 
boundedness of D. Let ii # iiO be the limit of a sequence of points ii'") E D. Since each 
point in the sequence belongs to D, b(ii(")) 2 - r for all n. It can now be shown, by 
utilizing the fact that ZZ'=, (Bi - r)iji is continuous at any ii # iiO, uniformly with 
respect to the pi's on any bounded set, that En,, b(ij("') < b(ii), which implies that 
ii E D. Consequently, D must be closed. 

The boundedness of D is established as follows. Let S, be the set of points i j  such 
that 1ii1 = R > 0. S ,  is then clearly both closed and bounded. If D' = D n S,  is 
empty, the boundedness of D follows immediately. Let us therefore assume that 
D' is nonempty ; in this case D' is also bounded and closed since D is closed and S R  
is bounded and closed. If 3 is a limit point of the sequence (6'")) such that ij'") E D', 
we must have that 5 E D' since D' is closed. But b(ij) < 0 by the "no-easy-money 
condition" - (4), since G # 5' by assumption. Therefore, since we already have that 
limn,, b(iic")) ,< b(ij), 0 cannot be a limit point to the sequence (b(ij("))), ij'") E D'. 
Consequently, b(ij) for i j  ED' is bounded away from zero, which implies that D 
must be bounded. 

To prove convexity, let G" and 6'" be two points in D. Then, for any 0 < A < 1, 

and 

which implies 

so that Lii" + (1 - I)ij"' E D. Thus, D is convex. 
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Let 

Then 

and 

For every pair of values w, # w, of the random variables lii, and i"y such that 17' 
and u2 E D, we obtain, by the strict concavity of u, 

Consequently, (34) i ~ n ~ l i e s  

O < L < l ,  

which, by (32) and (33), in turn implies that h is strictly concave on D. 
Since our problem has now been shown to be one of maximizing a strictly 

concave function over a nonempty, closed, bounded, convex set, it follows directly 
that the function h has a maximum and that the v; are finite and unique. 

A number of corollaries obtain from this lemma which we shall also require in the 
proof of Theorem 1. 

COROLLARY 1 : Let u(c), {pi), and r be defined as in the Lemma. Moreover, let u(c) 
be such that it has no lower bound. Then the v; which maximize (31) subject to (27) and 
(28) are such that 

The proof is immediate from the observation that h -, - co as the greatest lower 
bound on b such that Pr Z:'=, (pi - r)vi + r < b )  > 0 approaches 0 from above. 

COROLLARY 2 : Let u(c), {pi), and r be defined as in the Lemma. Then the maximum 
of the function (31) subject to the constraints (27) and (28) is greater than or equal to 
~ ( 4 .  r 

PROOF: When vi = 0 for all i, which is always feasible, we obtain by (31) that 
h = u(r). 

COROLLARY 3 : Let u(c), {pi), and r be dejined as in the Lemma. Moreover, let u(c) 
be such that u(c) < b. Then the vectors 6 which satisfy (27) and (28) are such that 
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The proof is immediate from the observation that u(c) is monotone increasing 
and that r, {pi), and the feasible vi are bounded. 

We are now ready to prove the theorem. The method of proof will be to verify 
that (22H25) is the (only) solution to (1 I).* 

PROOF OF THEOREM 1 FOR MODELS 1-11 : Denote the right side of (1 1) by T ( x )  upon 
inserting (22) for f (x).  This gives, for all decision points j, 

M 

T ( x )  = max -cY + ~ ( 1  - ( ~ k y ) l ' ( ' - ~ ) ) ~ -  ' E  - 1 ( P i  - r)zi 
c.(zi) {: [ t ( i = 2  

subject to 

and 

Since (14) may be written 

it follows from the "no-easy-money condition" (4) that (14) is satisfied if and only if 
either 

and 

and 

where s x + Y. 
Under feasibility with respect to (14), we then obtain 

( i  = 2 ,  . . . ,  M ) ,  

A proof based on the method of successive approximations may be found in [7]. 
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where 

(41) T(x) = sup + a(1 - (aky)'i('-'))y-l(s - c ) ~  

subject to (12), (38), (39), and 

since (42) is equivalent to (13) in view of (38). But by (31) the expectation factor in 
(41) may be written 

and (26), the Lemma, and Corollary 2 give 

(44) ky >, r' > 0 (Model I), 

(45) . ky d r '  < 1 (Model 11), 

while (26), the Lemma, and Corollary 3 give 

(46) k y > O  (Model 11). 

Thus, aT/lah > 0 always in Model I1 and in Model I whenever 

1 
(47) ky < - 

a 

under feasibility. When ky > l/a in Model I, T(x) does not exist; when ky = l la,  
(41) and (40) give T (x) = (l/y)sY # f (x). Consequently, it remains to consider the 
case when aT/ah > 0. 

Since the maximum of (43) subject to (42) and (39) is k by (26) and the Lemma, 
we obtain by the Lemma that the strategy 

zi - * - - v i  
S - C  

or 
* 1 

(48) zi = vi(s - c) 

is optimal and unique for every c which satisfies (12) and (38) when (38) holds. 
It is clearly also optimal when (36) and (37) hold. Consequently, (40) reduces to 

(49) T(x) = max + ak(1 - ( I X ~ ~ ) ' ' ( ' - ~ ' ) ~ - ' ( S  - c ) ~  
o < c < s  

Since u(c) is strictly concave and u'(0) = co in Models I and 11, T(x) is strictly 
concave and differentiable with an "interior" unique solution c*(x) whenever 

> 0 (Model I) ,  
(50) ak(1 - (ctky)'/(' - y ) ) y -  { < 0 (Model II), 
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and s 2 0. In this case, setting dT/dc  = 0 and solving for c,  we get, 

c ~ - l  - aky(l  - ( C X k y ) l l ( l - ~ ' ) ~ - ' ( s  - C ) Y - l  = 0 

In Model I, (50) is satisfied whenever (44) and (47) hold; as noted earlier, no 
solution exists in Model I for those cases in which ky 2 l / a .  In Model 11, (50) is 
always satisfied as seen from (45) and (46). 

Inserting (51) in (48) we obtain 

and (24) follows from (6) upon insertion of c*(x) and the z;(x). T ( x )  now becomes, 
upon insertion of c*(x) in (49), 

= f ( x )  

and the solution clearly exists for s > 0 or 

(52) ~ ~ 3 - y .  

Since (52) is an induced constraint with respect to period j - 1 ,  it remains to be 
verified that (52) is either redundant or not effective in period j - 1. Because (52) 
is already present in period j - 1 through (14), the induced constraint (52) is 
redundant, which completes the proof. 

PROOF OF THEOREM 1 FOR MODEL 111: Denote the right side of (1 1 )  T ( x )  upon 
inserting (22) for f (x) .  This gives, for all decision points j, 

T ( x )  = max log c + -E log 1 (Pi - r)zi 
C . ( Z I )  { 1 - a  a [ ( i y 2  

where 

a a210ga a2k 
K E - -  log (1 - a) + - + - 

1 - a  ( 1  - a)' ( 1  - a)2 

subject to (12), (13), and (14). By the reasoning for Models I and 11, we obtain 

(53) T ( x )  = rnax ( -  a, T ( x ) )  
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where 

(54) 
a  T(x) = sup log c + - { 1 - a  

log (s - c) 
c , ( ~ i )  

M 
+ - E  log ~ ( ~ i - r ) z i l ( s - c ) + r  + K  

1 - a  a [ (i=2 11 I 
subject to (12), 

(38) s - c > O ,  

(42) zi/(s - C) 2 0 (i = 2, . . . ,  M), 

and 

By (31), the next to last term in (54) can be written 

where aT/ah > 0. Since the maximum of (55) subject to (42) and (39) is (orkll - a) 
by (26) and the Lemma, we obtain from the Lemma that 

(48) zT(x) = v;(x + Y - c )  ( i  = 2,  . . . ,  M )  

is optimal and unique for every c which satisfies (12) and (38). Thus, (53) reduces, 
in analogy with Models I and 11, to 

a  ak 
(56) T(x) = max log (s - c) + - 

O Q C G S  1 - a  

where T(x)  always exists since 0 < a  < 1 ;furthermore, T(x) is strictly concave and 
differentiable. Setting aT/ac = 0 we obtain 

zT(x) = zvT(x + Y) 
and (24), all unique. Inserting (57) into (56) gives 

(i = 2 , .  .., M), 

a  a  
T(x) = log (1 - a) + logs + - log cr + -- log s 

1 - a  1 - a  

ak IX a2 loga a2k +- +- log(1 - a) + - +- 
1 - a  1 - a  (1 - a)' (1 - a)' 

= f (4. 
SinceJ(x) exists for x j  3 - Y, which as an induced constraint with respect to period 
j - 1 is made redundant by (14) for that period, the proof is complete. 
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When y = 0, the solution to (11) reduces to 

c*(x) = Bx, 

z;(x) = ( 1  - B)vTx 

But then, letting s = x + Y, 

f (s)  = Au(s) + C ,  

c*(s) = Bs, 

( i  = 2 ,  . . . ,  M). 

z:(s) = ( 1  - B)v;s (i = 2, . . . ,  M ) .  

As a result, except for zf ( x  + Y), the solution to the original problem is not altered 
when the individual, instead of receiving the noncapital income stream in install- 
ments, is given its present value Y in advance. Thus, instead of letting x be the state 
variable when there is a noncapital income, one could let x + Y be the state variable 
(pretending there is no income), as long as Y is deducted from z;(x + Y) .  

Note that it is sufficient, though not necessary, for a solution not to exist in 
Model I that rY 2 l / a  (Corollary 2). 

THEOREM 2 : Let a, {pi), r, y ,  and Y be defined as in Section 2. Moreover, let u(c) = 

-e-?'for c 2 0 where y > 0. Then a solution to (11) subject to (12H14)  existsfor 
x 2 - Y + [r/(y(r - log (-ctkr) and is given by 

x y log (-akr) - rv* 
(60) z*,(x) = - - - + 9 

r r - 1) 

( 1  = 2 ,  ..., M ) ,  

where the constants k and v; (v* = C Z 2  0;) are given by 

(62) k - ~ [ - ~ - z f d = 2 ( P i - r ) u ?  ] = max E[-e-'fd=2(Pi-r)v' ] subject to (27) 
( v i )  

provided that 

(63) log ( - akr) + b(F*) 0 
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where b(G*) is the greatest lower bound on b such that 

and fi* r (v',, . . . , v > )  Moreover, the solution is unique. 

Since the conditions under which Theorem 2 holds are quite restrictive, the 
reader is referred to [7] for the proof. Condition (63) insures that the individual's 

I '  
capital position x is nondecreasing over time with probability 1 ; it must hold for a 
solution to exist in closed form. The condition ar 2 1 is a necessary, but not 
sufficient, condition for (63) to be ~a t i s f ied .~  

4. PROPERTIES OF THE OPTIMAL CONSUMPTION STRATEGIES 

In each of the four models we note that the optimal consumption function c*(x) 
is linear increasing in capital x and in noncapital income y. Whenever y > 0, posi- 
tive consumption is called for even when the individual's net worth is negative, as 
long as it is greater than - Y in Models 1-111 and greater than - Y + [r / (y(r  - 
log ( -ukr)  in Model IV. Only at these end points would the individual consume 
nothing. 

Since x + Y may be viewed as permanent (normal) income and consumption is 
proportional (0 < B < 1) to x + Y in Models 1-111, we see that the optimal con- 
sumption functions in these models satisfy the permanent (normal) income 
hypotheses precisely [9 ,5,3] .  

In each model, c*(x) is decreasing in cc. Thus, the greater the individual's im- 
patience 1 - cc is, the greater his present consumption would be. This, of course, is 
what we would expect. 

By (20) and (21), the relative and absolute risk aversion indices of Models I-IV 
are as follows : 

q*(c) = 1 - y (Models 1-11), 

q*(c) = 1 (Model 111), 

(Model IV) 

For example, when u(c) = -e-.OOO1c, cc = .99, y = $10,000, r = 1.06, M = 2, and 8,  assumes each 
of the values .96 and 1.17 with probability .5, a solution exists for x >, %-22,986. For selected capital 
positions, the optimal amounts to consume, lend, and invest in this case are as follows: 

X c*(x) 2; (XI z;(x) 

$ - 22,986 0 $-102,488 $79,502 
0 $ 1,301 - 80,803 79,502 

50,000 4,131 - 33,633 79,502 
100,000 6,961 13,537 79,502 
500,000 29,601 390,897 79,502 

1,000,000 57,901 862,597 79,502 

The maximum loss in each period from risky ~nvestment is $3,180. 
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In Models 1-11, we obtain 

where d(ky)/d(l - y) is negative whenever b(6*) 2 1 - r ;  otherwise the sign is 
ambiguous. Since ky > 0 and uky < 1, the sign of (64) is ambiguous in both cases; 
i.e., a change in relative risk aversion may either decrease or increase present 
consumption. In Model IV, on the other hand, c*(x) is increasing in y ; i.e., a more 
risk averse individual consumes more, ceterus paribus. 

From (26) and (62) we observe that k is a natural measure of the "favorableness" 
of the investment opportunities. This is because k is a maximum determined by 
(the one-period utility function and) the distribution function (F); moreover, F 
is reflected in the solution only through k, and f (x) is increasing in k. Let us examine 
the effect of k on the marginal propensities to consume out of capital and non- 
capital income. 

Equation (29) gives 

dB ay 
x - = -(aky)yl(l - Y )  

< 0 (Model I), 
ak y - 1  > 0 (Model 11) 

Thus, we find that the propensity to consume is decreasing in k in the case of 
Model I. This phenomenon can at least in part be attributed to the fact that the 
utility function is bounded from below but not from above ; the loss from postpone- 
ment of current consumption is small compared to the gain from the much higher 
rate of consumption thereby made possible later. In Model 11, on the other hand, 
where the utility function has an upper bound but no lower bound, the optimal 
amount of present consumption is increasing in k, which seems more plausible from 
an intuitive standpoint. 

In Model 111, we observe from (30) the curious phenomenon that the optimal 
consumption strategy is independent of the investment opportunities in every 
respect. While the marginal propensity to consume is independent of k in Model IV 
also, the level of consumption in this case is an increasing function of k as is apparent 
from (59). We recall that the utility function in Model 111 is unbounded while that in 
Model IV is bounded both from below and from above. Thus, the class of utility 
functions we have examined implies an exceptionally rich pattern of consumption 
behavior with respect to the "favorableness" of the investment opportunities. 

5. PROPERTIES OF THE OPTIMAL INVESTMENT AND BORROWING-LENDING STRATEGIES 

The properties exhibited by the optimal investment strategies are in a sense 
the most interesting. Turning first to Model IV, we note that the portfolio of 
productive investments is constant, both in mix and amount, at all levels of wealth. 
The optimal portfolio is also independent of the noncapital income stream and the 
level of impatience 1 - or possessed by the individual, as shown by (61) and (62). 

Similarly, we find in Models 1-111 that, since for all i, m > 1, zf(x)/z*,(x) = ui/v', 
(which. is a constant), the mix of risky investments is independent of wealth, 
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noncapital income, and impatience to spend. In addition, the size of the total 
investment commitment in each period is proportional to x + Y. We also note that 
when y = 0, the ratio that the risky portfolio Z z 2  z;(x) bears to the total portfolio 
Z z  '=, z:(x) is independent of wealth in each model. 

In summary, then, we have the surprising result that the optimal mix of risky 
(productive) investments in each of Models I-IV is independent of the individual's 
wealth, noncapital income stream, and rate of impatience to consume ; the optimal 
mix depends in each case only on the probability distributions of the returns, the 
interest rate, and the individual's one-period utility function of consumption. 

In each case, we find that lending is linear in wealth. Turning first to Models 1-111, 
we find that borrowing always takes place at  the lower end of the wealth scale; 
(24) evaluated at x = - Y gives - Y < 0 as the optimal amount to lend. From (24) 
we also find that z;(x) is increasing in x if and only if 1 - v* > 0 since 1 - B is 
always positive. As a result, the models always call for borrowing at least when the 
individual is poor ; whenever 1 - v* > 0, they also always call for lending when he 
is sufficiently rich. 

In Model IV, we observe that lending is always increasing in x. Thus, when an 
individual in this model becomes sufficiently wealthy, he will always become a 
lender. At the other extreme, when x is at  the lower boundary point of the solution 
set, he will generally be a borrower, though not necessarily, since z;(x) evaluated 
at x = - Y + [r/(y(r - I)')] log (- akr) gives 

r log (-akr) rv* 
- Y +  -- 

I+. - YO. - 1) 

which may be either negative or positive. 
We shall now consider the case when the lending rate differs from the borrowing 

rate as is usually the case in the real world. Let r, - 1 and r, - 1 denote the borrow- 
ing and iending rates, respectively, where r,  > r,.  Unfortunately, the sign of 
dv*/dr is not readily determinable. However, since f (x) is increasing in k, the 
analysis is straight-forward.1° 

' O  When r ,  > r,, the "no-easy-money condition" requires that the joint distribution function of 
b,, . . . , f i ,  satisfies 

for all finite numbers 0, 3 0 such that Oi > 0 for at  least one I ;  

for all finite numbers Oi < 0 such that Oi < 0 for at  least one i ;  and 

for all finite numbers Hi, 8, 2 0 and all S* E S such that 
M 

1 4 = C a,, 
I = 2  krS' 
i*S. 

and 0, > 0 for at least one i.  Whcn r ,  = r , ,  4(a)-4(c) reducc to (4) 
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Consider first Models 1-111 when noncapital income y = 0. In that case, it is 
apparent from (24) that when the individual is not in the trapping state (i.e., 
x > - Y), he either always borrows, always lends, or does neither, depending on 
whether 1 - v* is negative, positive, or zero. Let k, denote the maximum of (31) 
when the lending rate is used and the constraint 

M 

(65) 1 vi d 1 
i = 2  

is added to constraints (27) and (28). Since the set of vectors 6 which satisfy (65) is 
convex and includes 6 = (0,. . . , O), the Lemma still holds when (65) is added to the 
constraint set. Analogously, let k, denote the maximum of (31) under the borrowing 
rate rB subject to (27), (28), and 

Again, the Lemma holds since the set of 6 satisfying (66) is convex and any 6 
such that CE, ui = 1, vi > 0, for example, satisfies all constraints. Setting 
k maxik,, k,), Theorem 1 holds as before when y = 0. 

when y > 0 in Models 1-111 and in the case of Model IV, no "simple" solution 
appears to exist when rB > r,. 

We shall now examine the behavior of capital implied by the optimal investment 
and consumption strategies of the different models. According to one school, 
capital growth is said to exist whenever 

that is, capital growth is defined as expected growth [lo]. We shall reject this 
measure since under this definition, as j + co, x j  may approach a value less than 
x, with n probability which tends to 1. We shall instead define growth as asymp- 
totic growth; that is, capital growth is said to exist if 

When the > sign is replaced by the 2 sign, we shall say that we have capital non- 
decline. If there is statistical independence with respect to j, (67) is implied by (68) 
but the converse does not hold, as noted. 

Model IV will be considered first. From (63) it follows that nondecline of capital 
is.always implied (in fact, the solution to the problem is contingent upon the 
condition that capital does not decrease, as pointed out earlier). It is readily seen 
that a sufficient, but not necessary, condition for growth is that there be a nonzero 
investment in at least one of the risky investment opportunities since in that case 
Pr {x,., > xj) > 0, j = 1,2,. . . , by (63). A necessary and sufficient condition for 
asymptotic capital growth is ur > 1, which is readily verified by reference to (62), 
(63), and the foregoing statement. 
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Let us now turn to Models 1-111 and let, as before, sj  = x j  + Y. From (7), (23), 
and (25) we now obtain 

where W  is a random variable. By (28), W 3 0. Attaching the subscript n to W  for 
the purpose of period identification, we note that since 

(70) verifies that 

sj 2 0 for all j whenever s, 2 0 (Models 1-111). 

Moreover, since Pr (W > 0) = 1 in Models I1 and I11 by Corollary 1, it follows 
that % 

(71)  s, > 0 whenever s ,  > 0 for all finite j (Models 11-111). 

From (70) we also observe that sj  = 0 whenever s, = 0 for all j > k. Consequently, 
x = - Y is a trapping state which, once entered, cannot be left. In this state, the 
optimal strategies in each case call for zero consumption, no productive invest- 
ments, the borrowing of Y, and the payment of noncapital income y as interest on 
the debt. In Models I1 and 111, it follows from (71) that the trapping state will 
never be reached in a h i t e  number of time periods if initial capital is greater 
than - Y. 

Equation (70) may be written 

The random variable C::: log W,, is by the Central Limit Theorem asymptotically 
normally distributed ; its mean is ( j  - l)E[log W].  By the law of large numbers, 

Thus, since s, > s ,  if and only if x j  > x,, it is necessary and sufficient for capital 
growth to exist that E[log W ]  > 0. 

It is clear that p given by p r P r ' O g  W 1  may be interpreted as the mean growth rate 
of capital. By (69), we obtain 

M 

E[log W ]  = log (1 - B) + E log 1 Vi - r)vI + r . [ { i = z  I1 
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For Model 111, this becomes, by (30) and (26), 

E[log W] = log cr + max E 
{ ~ i l  

subject to (27) and (28). Thus, a person whose one-period utility function of 
consumption is logarithmic will always invest the capital available after the allot- 
ment to current consumption so as to maximize the mean growth rate of capital 
plus the present value of the noncapital income stream. 

7. GENERALIZATIONS 

We shall now generalize the preceding model to the nonstationary case. We 
then obtain, by the same approach as in the stationary case, for all j, 

(72) f j ( x j )  = max (bij - ribij + rj(xj - cj) + yj  
c, . (z~ , )  

subject to 

(73) c i ao ,  

and 

where the patience factor a, the number of available investment opportunities M 
and S and their random returns fii - 1, the interest rater, and the noncapital income 
y may vary from period to period; this, of course, requires that they be time 
identified through subscript j. Time dependence on the part of any one of the 
preceding parameters also requires that f (x) be subscripted. 

As shown in [7], the solution to the nonstationary model is qualitatively the same 
as the solution to the stationary model. 

In the case of a finite horizon, the problem again reduces to (72H75) with 
f n +  l ( ~ n +  l)  = 0 if the horizon is at decision point n + 1. In this case, f (x), x, c, zi, 
and Y must clearly be time identified through subscript j even in the stationary 
model. Under a finite horizon, a solution always exists even for Model I. Again, the 
solution is qualitatively the same as in the infinite horizon case except that the 
constant of consumption proportionality B, increases with time j, B, = 1, and 
z$ = 0 for all i. ' ' 

University of Calijornia, Berkeley 
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" The implications of the results of the current paper with respect to the theory of the firm may be 
found in [6]. 
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